Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Graeme J. Gainsford,\* S. V. Chong, B. Ingham and J. L. Tallon

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand

Correspondence e-mail: g.gainsford@irl.cri.nz

#### Key indicators

Single-crystal X-ray study T = 168 KMean  $\sigma$ (W–O) = 0.012 Å H-atom completeness 0% Disorder in solvent or counterion R factor = 0.051 wR factor = 0.128 Data-to-parameter ratio = 28.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Decaammonium dodecatungstate nonahydrate, $(NH_4)_{10}[H_2W_{12}O_{42}] \cdot 9H_2O$ : anionic 'isomorphism'

The title salt crystallizes in an almost identical cell to that of  $(NH_4)_6[H_6W_{12}O_{42}]\cdot 10H_2O$  [Averbuch-Pouchot, Tordjman, Durif & Guitel (1979). Acta Cryst. B35, 1675-1677]. While the centrosymmetric anion coordinates are isomorphous, refinement confirms the different ammonium cation and water content, even though the H atoms cannot be unambiguously determined.

Received 3 September 2002 Accepted 18 September 2002 Online 27 September 2002

## Comment

The title compound, (I), was prepared as a by-product while attempting to use aniline as an organic amine inter-layer spacer molecule for new inorganic oxide-layered compounds. The crystal structure comprises  $[H_2W_{12}O_{42}]^{10-}$  anions (Fig. 1) bound in an infinite three-dimensional network through hydrogen bonding with NH<sub>4</sub><sup>+</sup> cations and water molecules. There are at least 42 contacts between the anion O atoms, amine N atoms and water O atoms within normal hydrogenbonding distances, e.g. O22···O2W 2.76 (2) Å.



The two independent anions in the asymmetric unit are centrosymmetric and are essentially identical (truly isomorphous) with those in (NH<sub>4</sub>)<sub>6</sub>[H<sub>6</sub>W<sub>12</sub>O<sub>42</sub>]·10H<sub>2</sub>O (Averbuch-Pouchot et al., 1979, hereafter AVEPOU). The final cell composition is inferred from the consistency of the refined displacement parameters of the water O atoms and ammonium cation N atoms, the analytical data, and the proximity of cations to each other, since the positions of the H atoms cannot be determined unambiguously in the presence of the W atoms. The atom-numbering scheme for the anions follows that in AVEPOU, with the coordinates transformed into one asymmetric unit. The cell volume here is slightly larger  $[2542 (2) \text{ Å}^3 \text{ at } 168 \text{ K compared with } 2540 \text{ Å}^3 \text{ at } 293 \text{ K for}$ 

© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Cryst. (2002). E58, i93-i94

AVEPOU], as expected from the greater total number of cations and water molecules. Other structures found in the Cambridge Structural Database [Allen & Kennard, 1993; Conquest (CCDC, 2002)] containing the same  $[H_2W_{12}O_{42}]^{10-1}$ anion are the closely related (NH<sub>4</sub>)<sub>10</sub>[H<sub>2</sub>W<sub>12</sub>O<sub>42</sub>]·10H<sub>2</sub>O, which crystallizes in space group Pbca, as reported by Allmann (1971), and a decasodium diglycine salt (Naruke et al., 2000). A summary of the expected geometry of the anions is given in the paper reporting  $Na_{10}[H_2W_{12}O_{42}] \cdot 20H_2O$  (Evans & Rollins, 1976). The internally self-consistent range of W–O distances is indicated in Table 1 by those found for W1.

A larger crystal from another preparation was also examined; it had a slightly smaller cell [2510 (1) Å<sup>3</sup> at 168 K], but the diffraction data were not as good, with an internal agreement  $R_{int}$  of 0.068, and the subsequent refinement was less stable. The isomorphism of the anion coordinates reported here with those in the six-cation structure AVEPOU suggests that this larger crystal could be made up of plate-like twins, possibly with variable cation/water composition.

## **Experimental**

The compound was prepared as a by-product of the reaction of  $H_2WO_4$  with aniline in an ammonia (0.1 N) solution and recrystallized from water [N content calculated for  $(H_{60}N_{10}O_{51}W_{12})$ , 4.35%; found 4.33%].

Z = 2

 $D_x = 4.211 \text{ Mg m}^{-3}$ 

Cell parameters from 8000

Mo Ka radiation

reflections

 $\mu = 26.20 \text{ mm}^{-1}$ 

Plate, colourless

 $0.44 \times 0.14 \times 0.06 \text{ mm}$ 

T = 168 (2) K

 $\theta = 2.3 - 26.3^{\circ}$ 

#### Crystal data

| $(NH_4)_{10}[H_2W_{12}O_{42}].9H_2O$ |
|--------------------------------------|
| $M_r = 3222.78$                      |
| Triclinic, P1                        |
| a = 11.945 (4) Å                     |
| b = 13.225 (5) Å                     |
| c = 16.780 (6) Å                     |
| $\alpha = 76.159(5)^{\circ}$         |
| $\beta = 80.985 \ (5)^{\circ}$       |
| $\gamma = 88.763 \ (5)^{\circ}$      |
| $V = 2541.6 (15) \text{ Å}^3$        |
|                                      |
| Data collection                      |
|                                      |

| 10192 independent reflections          |
|----------------------------------------|
| 7208 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.047$                  |
| $\theta_{\rm max} = 26.5^{\circ}$      |
| $h = -14 \rightarrow 14$               |
| $k = -16 \rightarrow 16$               |
| $l = -20 \rightarrow 20$               |
|                                        |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0765P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.051$ | where $P = (F_o^2 + 2F_c^2)/3$                             |
| $wR(F^2) = 0.128$               | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| S = 0.99                        | $\Delta \rho_{\rm max} = 6.04 \text{ e} \text{ Å}^{-3}$    |
| 10192 reflections               | $\Delta \rho_{\rm min} = -5.45 \text{ e } \text{\AA}^{-3}$ |
| 357 parameters                  |                                                            |

## Table 1

Selected interatomic distances (Å).

| W1-O38     | 1.764 (12) | W1-O37 | 2.168 (10) |
|------------|------------|--------|------------|
| W1-O34     | 1.768 (12) | W1-O1  | 2.258 (12) |
| $W1-O10^i$ | 1.874 (12) | W6-O1  | 2.400 (12) |
| W1-O35     | 1.947 (12) |        |            |

Symmetry code: (i) 1 - x, 2 - y, 1 - z.



#### Figure 1

The molecular structure of one of the two independent  $[H_2W_{12}O_{42}]^{10-1}$ anions. Displacement ellipsoids are drawn at the 50% probability level (Farrugia, 1997) and labels for centrosymmetrically related atoms have been omitted.

No H atoms were included in the refinement. One disordered water O atom (O9WA) was refined over two sites with final occupancies 0.52 (3)/0.48 (3) and a common U value of 0.045 (6)  $Å^2$ . The largest residual electron-density peak was located 0.99 Å from W6 and the deepest hole 1.07 Å from W7.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 in WinGX (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank Dr J. Wikaira and Professor Ward T. Robinson of the University of Canterbury for their assistance.

### References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Allmann, Von R. (1971). Acta Cryst. B27, 1393-1404.
- Averbuch-Pouchot, M. T., Tordjman, I., Durif, A. & Guitel, J. C. (1979). Acta Cryst. B35, 1675-1677.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- CCDC (2002). ConQuest. Version 1.3. The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
- Evans, H. T. & Rollins, O. W. (1976). Acta Cryst. B32, 1565-1567.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Naruke, H., Fukuda, N. & Yamase, T. (2000). Acta Cryst. C56, 177-178.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.